Hydropyrolysis: implications for radiocarbon pretreatment and characterization of black carbon

Journal Publication ResearchOnline@JCU
Ascough, P.L.;Bird, M.I.;Meredith, W.;Wood, R.E.;Snape, C.E.;Brock, F.;Higham, T.F.G.;Large, D.J.;Apperley, D.C.
Abstract

Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as black carbon (BC). BC degrades extremely slowly and is resistant to diagenetic alteration involving the addition of exogenous carbon, making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions.

Journal

N/A

Publication Name

N/A

Volume

52

ISBN/ISSN

0033-8222

Edition

N/A

Issue

2-3

Pages Count

15

Location

N/A

Publisher

University of Arizona

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

N/A