Damselfish territories as a refuge for macroalgae on coral reefs
Journal Publication ResearchOnline@JCUAbstract
Herbivory is widely accepted as a key process determining the benthic community structure and resilience of coral reefs. Recent studies have mostly focused on the importance of roving herbivorous fishes in ecosystem processes. Here, we examine the role of territorial damselfish in shaping patterns of macroalgal distribution based on benthic surveys and macroalgal bioassays. The territory composition and effect of resident damselfish on the removal of Sargassum bioassays were quantified for six species of damselfish on Lizard Island, a mid-shelf reef in the northern Great Barrier Reef (GBR). The functional composition of algal communities within territories varied markedly among species. The territories of four species (Dischistodus perspicillatus, Dischistodus pseudochrysopoecilus, Plectroglyphidodon lacrymatus, and Stegastes nigricans) were characterized by algal turfs, while the territories of two species (Dischistodus prosopotaenia and Hemiglyphidodon plagiometopon) were characterized by foliose and leathery brown macroalgae. Sargassum, a generally rare alga on mid-shelf reefs, was a particularly common alga within D. prosopotaenia territories on the leeward side of the island but absent within their territories on the windward side of the island. D. prosopotaenia was the only species to retain the transplanted Sargassum, with only a minimal reduction in Sargassum biomass (1.1%) being recorded within their territories at both leeward and windward sites over a 24-h period. In contrast, reductions in Sargassum biomass were high in areas adjacent to D. prosopotaenia territories (83.8%), and within and adjacent to the territories of the five remaining damselfish species (76.2–92.5%). Overall, only one of the six damselfish species provided a refuge for leathery brown macroalgae and may facilitate the development of this macroalgae on mid-shelf reefs of the GBR
Journal
Coral Reefs
Publication Name
N/A
Volume
29
ISBN/ISSN
1432-0975
Edition
N/A
Issue
1
Pages Count
12
Location
N/A
Publisher
Springer
Publisher Url
N/A
Publisher Location
N/A
Publish Date
N/A
Url
N/A
Date
N/A
EISSN
N/A
DOI
10.1007/s00338-009-0567-8