Leaf chemical and spectral diversity in Australian tropical forests

Journal Publication ResearchOnline@JCU
Asner, Gregory P.;Martin, Roberta E.;Ford, Andrew J.;Metcalfe, Daniel J.;Liddell, Michael J.
Abstract

Leaf chemical and spectral properties of 162 canopy species were measured at 11 tropical forest sites along a 6024 mm precipitation/yr and 8.78C climate gradient in Queensland, Australia. We found that variations in foliar nitrogen, phosphorus, chlorophyll a and b, and carotenoid concentrations, as well as specific leaf area (SLA), were expressed more strongly among species within a site than along the entire climate gradient. Integrated chemical signatures consisting of all leaf properties did not aggregate well at the genus or family levels. Leaf chemical diversity was maximal in the lowland tropical forest sites with the highest temperatures and moderate precipitation levels. Cooler and wetter montane tropical forests contained species with measurably lower variation in their chemical signatures. Foliar optical properties measured from 400 to 2500 nm were also highly diverse at the species level, and were well correlated with an ensemble of leaf chemical properties and SLA (r2 ¼ 0.54–0.83). A probabilistic diversity model amplified the leaf chemical differences among species, revealing that lowland tropical forests maintain a chemical diversity per unit richness far greater than that of higher elevation forests in Australia. Modeled patterns in spectral diversity and species richness paralleled those of chemical diversity, demonstrating a linkage between the taxonomic and remotely sensed properties of tropical forest canopies. We conclude that species are the taxonomic unit causing chemical variance in Australian tropical forest canopies, and thus ecological and remote sensing studies should consider the role that species play in defining the functional properties of these forests.

Journal

Ecological Applications

Publication Name

N/A

Volume

19

ISBN/ISSN

1939-5582

Edition

N/A

Issue

1

Pages Count

N/A

Location

N/A

Publisher

Ecological Society of America

Publisher Url

N/A

Publisher Location

N/A

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1890/08-0023.1