Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages

Journal Publication ResearchOnline@JCU
Fulton, C.J.;Bellwood, D.R.
Abstract

We examined the relationship between swimming performance, wave exposure, and the distribution patterns of labrids on temperate rocky reefs, in comparison with previous functional analyses of a tropical assemblage. Visual censuses of the distribution and abundance of labrids across two major gradients of wave exposure (depth and aspect to prevailing winds) were made at two offshore islands near Port Stephens, New South Wales, Australia. Distinct shifts in species composition and abundance were evident between high and low wave exposure habitats on temperate rocky reefs, particularly between deep and shallow habitats on exposed reef fronts. The swimming performances of temperate labrids were assessed through examination of pectoral fin shape (aspect ratio) and in situ swimming speeds. A diversity of pectoral fin morphologies was exhibited within this temperate assemblage, ranging from rounded to tapered fins (aspect ratios of 0.52 and 1.43, respectively). Fin shape was strongly correlated (Pearsonrsquos correlation 0.884, P<0.001) with swimming speed (ranging from 1.05 and 3.06 body lengths s–1), in a relationship comparable to that observed in tropical labrids. Inter-specific differences in swimming ability provided some explanation for differences in the distribution and abundance of temperate labrids in relation to wave exposure. However, our findings suggest that although coral reef labrids appear to predominantly use high aspect-ratio fins to successfully occupy wave-exposed habitats, temperate labrids appear to be using an enhanced swimming ability through increased body size.

Journal

Marine Biology

Publication Name

N/A

Volume

144

ISBN/ISSN

1432-1793

Edition

N/A

Issue

3

Pages Count

9

Location

N/A

Publisher

Springer

Publisher Url

N/A

Publisher Location

New York, USA -NY

Publish Date

N/A

Url

N/A

Date

N/A

EISSN

N/A

DOI

10.1007/s00227-003-1216-3